
SP400X Series
SP400X Scanner Printer
Communication Protocols

2

Copyright information
(c) Copyright 2012 Handheld Group

The information contained herein is subject to change without notice. The only warranties for Handheld products and services are set forth

in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an

additional warranty. Handheld shall not be liable for technical or editorial errors or omissions contained herein.

Trademark credits
Wi-Fi® is a registered trademark of the Wi-Fi Alliance.

Edition 1: November 2012

SP400X Series

3

SP400X Series - Contents

Contents
1. OvErviEW

Scope .. 4

reference Documents.. 4

Definitions.. 4

2 ASCii COmmuNiCATiON PrOTOCOl

introduction.. 5

messaging Protocol.. 5

 message Sequence .. 5

 Command Table ... 6

 Servers... 7

 message Sequence at Device Startup... 7

 HHP communication interfaces... 10

message reference.. 10

 General message header ... 10

 GetFile and GetFilereply.. 12

 GetServer and GetServerreply...13

 Heartbeat and Heartbeatreply .. 14

 ScanData, ScanDatareply, and PrintresultData... 15

 SetConfig and SetConfigreply .. 17

 GetConfig and GetConfigreply ... 18

 File Aliases.. 18

 Supported Symbology Types... 19

 Timing and result Data Keys .. 20

 Wi-Fi Key management .. 21

 Key setup .. 21

 Key file transfer ... 21

 Encryption algorithm ... 21

3. BiNAry COmmuNiCATiON PrOTOCOl

introduction... 23

Protocol .. 23

 Framing.. 24

 Fletcher’s Checksum in C#... 25

Data Flow ... 26

Command reference .. 26

 Command Overview Table ... 27

 Command Flags.. 28

 Command Details .. 28

 Echo ... 28

 Get version String.. 28

 Get memory .. 28

 Put memory... 28

 Get Device Configuration values .. 29

 Set Device Configuration values .. 29

 Get utility Buffer info ... 29

 Get Print Template Names.. 29

 Query versions .. 30

 Apply HHP File.. 30

4. CONFiGurATiON PArAmETErS

introduction... 31

Table of Configuration Parameters .. 31

5 ErrOr CODES

introduction.. 36

Table of Error Codes .. 36

4

1. Overview

Scope
This document contains information about the communication protocols used with the Handheld SP400X. There are two protocols supported;

ASCii and binary. Either communication protocol may be used in development; however the server and device must communicate in like.

it is strongly encouraged to use the recommended communication protocol for like applications based upon the intended use.

Reference Documents
Handheld SP400X Series Template Design Software user Guide

Handheld SP400X Series Configuration Software user Guide

Handheld SP400X Series SP400X Scanner Printer - Quick Start Guide

Definitions
Device The Handheld SP400X

Host Host system communicating directly with the device

Transport means of communication between the host and the device—could be uSB or wireless

SP400X Series - 1. Overview

5

2. ASCII Communication Protocol

Introduction
This first half of this document describes the layout and usage of the messages used to communicate between the SP400X device and a

server application. A message is composed of a general transport header and a payload. The transport header has the same layout for all

messages but the payload is specific to each message.

messages are sent between a device and server over a wireless protocol. This wireless protocol is typically an 802.11 wireless connection

using uDP, but in the future this protocol may be extended to other transports as well.

This document also describes the general sequence of the exchange of messages between the server and the device.

Messaging Protocol
The device communicates by sending messages containing a command code and a command-specific payload. This section describes the

general message usage; the following section documents the exact message layout and details for each command code.

Message Sequence
most messages are used in a transaction. The sender sends a request (for example, GetFile) and waits for the expected response (for

example, GetFilereply). if a response for the request is received, the transaction is done; otherwise the sender resends the same request a

configurable number of times before terminating the transaction.

The receiver sends a reply to the sender at the address defined in the message header. The message header also contains a sequence

number which must be maintained in the reply to ensure that out-ofsequence messages do not occur.

Figure 2-1 shows the typical sequence of the request and response handling of messages.

SP400X Series - 2. ASCII Communication Protocol

6

Command code Mnemonic Description

03 GetFile Get a file from the server – used to transfer firmware, configura-

tion and print template files. This message is used in a loop until

all data blocks have been received.

04 GetFilereply reply for 03 – block of file data

05 GetServer Get server address for scan data messages. At startup, the device

is configured to send requests to a specific file server. The GetSer-

ver command is sent after startup and allows the initial applica-

tion server to redirect devices to a different application server.

06 GetServerreply reply for 05 - application server addresses. may be the same

address as the server that is sending this message

07 Heartbeat Heartbeat / status data. The device sends this message at a con-

figurable interval to allow a server to track how many devices are

currently in use and obtain information about the ink and battery

level of those devices.

08 Heartbeatreply reply for 07 – server status data. The server sends this message

to update the device with required version information. it also

sends a reboot signal when the server requires the device to

reboot.

09 ScanData Scan data – The device sends this message after scanning a

barcode.

Figure 2-1 Sequence of the request and response handling of messages

1. Format header and payload
fields of request.

2. Wait for replay.

3. resend if timeout occurs.

4. if sequence number matches,
transaction is done.

1. Parse message, save
client address

2. Execute request.

3. Format header and
payload fields of response.

8

Figure 2-1 Sequence of the request and response handling of messages

The amount of time the All-in-One waits for a reply and the number of times the All-in-One resends the
transaction are configurable parameters. When a timeout occurs the device sends the request with the
same transaction number as the original message. The server application should always respond to
incoming requests, even if a reply for that request has already been sent.

Command Table
The following table shows the available command codes that are used in the message transactions.

Most messages are initiated by the device with the exception of GetConfig and SetConfig which are
sent by a server or other host to update configuration parameters on the device. The shading in the
following table shows how messages are grouped into requests and replies. In general, each request is
matched with a specific response, but in the case of ScanData the device sends an additional
PrintResultData message to the server after printing the data contained in the ScanDataReply.
Table 2-1 Command code descriptions

Command
code

Mnemonic Description

03 GetFile Get a file from the server – used to transfer firmware, configuration and
print template files. This message is used in a loop until all data blocks
have been received.

04 GetFileReply Reply for 03 – block of file data

05 GetServer Get server address for scan data messages. At startup, the device is
configured to send requests to a specific file server. The GetServer
command is sent after startup and allows the initial application server
to redirect devices to a different application server.

06 GetServerReply Reply for 05 - application server addresses. May be the same address
as the server that is sending this message

07 Heartbeat Heartbeat / status data. The device sends this message at a
configurable interval to allow a server to track how many devices are
currently in use and obtain information about the ink and battery level
of those devices.

08 HeartbeatReply Reply for 07 – server status data. The server sends this message to
update the device with required version information. It also sends a
reboot signal when the server requires the device to reboot.

09 ScanData Scan data – The device sends this message after scanning a barcode.

All-in-one device Server

The amount of time the All-in-One waits for a reply and the number of times the All-in-One resends the transaction are configurable

parameters. When a timeout occurs the device sends the request with the same transaction number as the original message. The server

application should always respond to incoming requests, even if a reply for that request has already been sent.

Command Table
The following table shows the available command codes that are used in the message transactions.

most messages are initiated by the device with the exception of GetConfig and SetConfig which are sent by a server or other host to update

configuration parameters on the device. The shading in the following table shows how messages are grouped into requests and replies.

in general, each request is matched with a specific response, but in the case of ScanData the device sends an additional PrintresultData

message to the server after printing the data contained in the ScanDatareply.

Table 2-1 Command code descriptions

SP400X Series - 2. ASCII Communication Protocol

7

Command code Mnemonic Description

10 ScanDatareply reply for 09 – print data or error message sent from server to

device after the server has determined print data for the scan data

sent in the preceding ScanData message.

11 PrintresultData Print result and timing data sent by the device to the server after

receiving and printing the data sent in the preceding ScanDa-

tareply message. This message does not have a reply so it is

considered “best effort” and may be lost. Sending of this message

can be switched off with a configuration parameter.

12 SetConfig update configuration parameter. Sent by the server to change

configuration parameters on the device.

13 SetConfigreply reply for 12 – result of configuration update to indicate success

or failure of the update to the server.

14 GetConfig Get configuration parameter. Sent by the server to query current

configuration parameters on the device.

15 GetConfigreply reply for 14 – value of configuration parameters.

Table 2-1 Command code descriptions

Servers
logically there are three types of servers that are required to communicate with the SP400X, each performing a different function. These

servers can all be housed in one computer or they can each be located in separate computers. The following servers are required to operate

the SP400X:

•	 File	server:	A	storage	place	for	files	that	can	be	accessed	by	the	SP400X	devices,	such	as	update	files.	When	the	SP400X	is	turned		

 on, it sends a GetFile request to the file server to check for upgrades.

•	 Registration	server:	After	checking	for	upgrades,	the	SP400X	sends	a	request	to	the	registration	server	to	obtain	the	address	of	the		

 application server.

•	 Application	server:	Runs	the	application	which	receives	scanned	barcodes	and	replies	with	print	data.

Message Sequence at Device Startup
The following flowchart shows the startup sequence qualitatively. The device first sends a GetFile request to the file server which may

initiate a cycle of upgrades. if the file server is not available, the device skips the update cycle and proceeds by sending a GetServer request

to the registration server.

To keep firmware up to date, each time a device is turned on, it downloads a file from the file server called “download.txt” that contains file

version information. if the device detects that the file server has newer versions of the configuration, firmware, print template definitions, or

background images, the device downloads these files from the file server and stores them internally.

The download.txt file consists of multiple lines of the following format:

 0, c:\serverpath\filename, filename, checksum

The first column is reserved and should be set to 0; the second column is the path to the upgrade file on the server; the third column is the

file type as it is known to the device and is taken from Table 2-16; the final column is the CrC16 checksum of the entire file. Generally,

download.txt and the actual files will be generated by a utility supplied by Handheld.

SP400X Series - 2. ASCII Communication Protocol

8

Once the device is fully updated, it sends the registration server a GetServer request. The registration server replies with the address of the

application server in the GetServerreply message. The address of the application server can be the same as the registration server, or for

load-balancing purposes the addresses of registration and application servers can be different.

The file server and registration server addresses, which the device sends the initial requests to, are stored in flash. The addresses can be

DNS aliases.

SP400X Series - 2. ASCII Communication Protocol

9Figure 2-2 message sequence at device startup

SP400X Series - 2. ASCII Communication Protocol

Turn on All-in-One device

initialize wireless interface.
Download download.txt.

receive response

if ANy version differs, then
1. Transer first file

2. Send GetFile request
This process may take some time and

may require restarting the device.

receive response

1. Check battery level.
2. Check ink cartridge.
3. Get file version info.
4. Send HeartBeat request.

receive response,
repeat check and heartbeat on

1-minute intervals (configurable)

Scan bar codes and print

Send GetServer requests to
both registration servers

if battery capacity is OK, then
applychanges and rebOOT or

else shut down (replace battery)

receive response,
get next block if required

Send GetServerreply

receive and handle

Send HeartBeatreply

receive and handle

Send GetFilereply

receive and handle requests

Send GetFileresponse

Device File Server Application
Server

receive and handle request

legend:
Device = All-in-One Scanner Printer
File server = Server where default configuration and firmware images are kept
Application server = Server where the HanDHelD sp400X series COnFiguraTiOn sOFTware is running

10

HHP communication interfaces

Message reference
This section of this document details the message fields used in the transactions between the device and server. The individual commands

are grouped into logical transactions. Within each transaction the SequenceNumber field must be the same. The device does not handle

concurrent transactions; only one transaction may be active at any one time. The sequence number for each transaction has to be different

from the previous one; generally they will increase monotonically, but this is not a strict requirement.

messages are sent in packed ASCii format. All fields, with the exception of binary data fields in the file transfer and scan data messages,

consist entirely of printable ASCii characters.

General message header
Each message starts with the message header shown in Table 2-2. The TransportType is a two-byte iD that must be set to Ha. This allows

the receiver to filter out packets that were accidentally sent to the same socket.

Table 2-2 message headers

Field name len Type Format notes sample Value

TransportType 2 String Justification not

required

String identifying type of this

packet. must be set to HA.

HA

CommandCode 2 integer right justified;

numeric; zero padded;

Numeric command code

from list of valid command

codes in Table 3-20

02

Device iD 16 String left justified; The device serial number 12345678

Server Device

Communication
module

input (scanner
or reader for

example

Wireless or
uSB

Output
(Print logic)

main
program

com
port

com 10

com 9

interface Dlls Wireless or
uSB

HHP or other
third party

applications

HHP applica-
tions (setup,

configuration,
maintenance)

Partner Data Service & Business Application

SP400X Series - 2. ASCII Communication Protocol

11

Field name len Type Format notes sample Value

SourceiPAddress 16 String left justified; nu-

meric+dot or other

address separators;

no imbedded spaces;

iP or other transport address

to send the reply to. Can be

used for routing inheteroge-

neous networks.

123.222.111.200

SourcePort 5 integer right justified;

numeric; zero padded;

iP or other transport port to

send the reply to. Can be

used for routing in

heterogeneous networks.

50010

Payloadlength 4 integer right justified;

numeric; zero padded;

length of the payload

following this header

0325

SequenceNumber 5 integer right justified;

numeric; zero padded;

Number to match a request

and reply belonging to one

transaction

00010

ErrorCode 4 integer right justified;

numeric; zero padded;

Error code for reply

messages

0000

Table 2-2 message headers

SP400X Series - 2. ASCII Communication Protocol

12

GetFile and GetFileReply
The GetFile transaction is used to transfer data files from the server to the device. in each transaction the device requests to transfer a spe-

cific portion of a file with a given starting block number and length. The server responds with the block number, block length, and the actual

data. The position of the file on the server is calculated as BlockSize*BlockNumber. When the end of the file is reached, the server returns a

partial block and sets the lastBlockindicator.

Table 2-3 GetFile payload

Field name len Type Format notes sample Value

ApplicationName 20 String left justified Name of application

configured in parameter

“ApplicationName” (see
Table 4-22)

Packaging1

BlockNumber 10 integer right justified; nume-

ric; zero padded

Number of block to send,

zero-based

0000000000

BlockSize 5 Size of the requested

block, currently only 1024

supported

01024

Aliasindicator 1 indicates whether to use a

file alias (1) or an actual file

name (0)

1

FileName 255 String left justified; alpha

numeric;

A file aliases from Table
2-16 or the path to a file on

the server.

HHPConfig

Field name len Type Format notes sample Value

ApplicationName 20 String left justified Copy of value from GetFile

request

Packaging1

BlockNumber 10 integer right justified; nume-

ric; zero padded

Number of block to send,

zero-based

0000000000

BlockSize 5 Size of the requested

block, currently only 1024

supported

01024

lastBlockindicator 1 Set to 1 if this was the last

block in the file, otherwise 0

1

Blocklength 5 Actual length of current

block, from 1 to BlockSize

00023

FileData 1024 binary N/A The actual binary data from

file

this is file data

Table 2-4 GetFile payload

SP400X Series - 2. ASCII Communication Protocol

13

GetServer and GetServerReply
The GetServer transaction is used to obtain information about which application server will handle ScanData requests. When the device is

turned on, it sends a GetServer request to the primary and alternate registration servers stored in its internal configuration memory (see

PrimaryregServerDNSName and AlternateregServerDNSName Table 4-22). The application server responds with a GetServerreply

containing a server iP address to be used in subsequent ScanData requests. The registration server may chose to send its own address or

the address of a different server.

The device stores the addresses returned from the registration servers as application server 1 and application server 2. The device will

send requests to application server 1 until a timeout occurs, at which point it switches over to application server 2 for subsequent requests.

if another timeout occurs, the device switches back.

Table 2-5 GetServer payload

Field name len Type Format notes sample Value

ClientiPAddress 16 String left justified;

numeric+dot; no

imbedded spaces;

Dot notation of iP address

like 127.0.0.1 to send

ScanData requests to

10.0.1.2

ClientlistenPort-

Number

5 integer right justified; nume-

ric; zero padded

Port number to send

ScanData requests to

50010

ClientmACAddress 12 String zero padded;

HEX values;

uPPErCASE

mAC address of wireless

interface used by this

message protocol

00ABCDEF1111

ApplicationName 20 String left justified Name of application

configured in parameter

“ApplicationName”

(see Table 4-22)

Packaging1

Field name len Type Format notes sample Value

AppServerAddress 300 String left justified;

alpha numeric;

colon and semicolon

delimited

The CurrentServeriP and

CurrentServerPort values

the device should use for

ScanData requests.

CurrentServeriP:

100.11.12.130;

CurrentServerPort: 12345

Table 2-6 GetServerreply payload

SP400X Series - 2. ASCII Communication Protocol

14

Heartbeat and HeartbeatReply
The device periodically sends out a Heartbeat request to the current application server. The server is expected to respond with a matching

Heartbeatreply message. if no reply is received, the device switches to the other application server and resends the Heartbeat request. The

heartbeat interval in milliseconds is configurable by parameter HeartbeatintervalmS from Table 4-22 .

The heartbeat request sends battery, ink level, and version information to the server to allow the application server to track the state of the

devices.

Table 2-7 Heartbeat payload

Field name len Type Format notes sample Value

ClientiPAddress 16 String left justified;

numeric+dot;

no imbedded spaces;

Dot notation of iP address like

127.0.0.1 to send ScanData

requests to

10.0.1.2

ClientlistenPort

Number

5 integer right justified;

numeric; zero padded;

Port number to send ScanData

requests to

50010

ClientmACAddress 12 String zero padded;

HEX values;

uPPErCASE

mAC address of wireless interfa-

ce used by this message protocol

00ABCDEF1111

Batterylevel Percent 3 integer right justified;

numeric; zero padded;

Current battery charge level in

percent between 000 and 100

090

inklabelsPrinted 5 Number of ink labels that have

been printed

04000

PrimaryregServer

PortNumber

5 integer right justified;

numeric; zero padded;

Port number where this device

will send GetServer requests

09101

Alternatereg

ServeriPAddress

16 String left justified;

numeric+dot; no

imbedded spaces;

Server address to which this de-

vice will send GetServer requests

if the primary server becomes

unavailable

10.0.1.3

Alternatereg

ServerPortNumber

5 integer right justified;

numeric; zero padded;

Server port number to which

this device will send GetServer

requests if the primary server

becomes unavailable.

09105

PrimaryServeriP

Address

16 String left justified;

numeric+dot; no

imbedded spaces;

Dot notation of iP address where

this device will send ScanData

requests

10.0.1.2

PrimaryServerPort

Number

5 integer right justified;

numeric; zero padded;

Port number where this device

will send ScanData requests

09101

AlternateServeriP

Address

16 String left justified;

numeric+dot; no

imbedded spaces;

Server address to which this de-

vice will send ScanData requests

if the primary server becomes

unavailable

10.0.1.3

AlternateServer

PortNumber

5 integer right justified;

numeric; zero padded;

Server port number to which

this device will send ScanData

requests if the primary server

becomes unavailable.

09105

SP400X Series - 2. ASCII Communication Protocol

15

SP400X Series - 2. ASCII Communication Protocol

Field name len Type Format notes sample Value

Fileversions 300 String left justified;

alpha numeric;

A list of pairs of file aliases

and their versions delimited

by semicolons

HHPConfig:0;HH PSecurity:0;HHP Template:

62344; HHPTemplateim age:7056;HHPCode-

Firmware: 28 769;HHPFPGAFirmware:

13481;H HPimagerFirmware:8999;

HHPCommunicationFirmware:17538;

Table 2-7 Heartbeat payload

Field name len Type Format notes sample Value

rebootTime-

Stamp

17 Date

time

yyyymmDDHHm

mSSfff

The server timestamp when all imprinters are to reboot.

imprinter does not keep time, therefore when the value

changes from the one currently stored on the device, it will

save the new value and reboot the device.

2001010120

3301000

Table 2-8 Heartbeat payload

ScanData, ScanDataReply, and PrintResultData
The device sends the ScanData request to the server when a successful scan occurs. The ScanDatarequest contains the actual data recei-

ved from the scan engine in addition to the type of symbology (such as barcode or data matrix) that was decoded. The device also sends

a DuplicateScanindicator to tell the server that this bar code is identical to the one scanned in the previous transaction. Note that retries

within one transaction do not have the DuplicateScanindicator set.

The server determines what should be printed in response to the scan data and sends the label print instructions to the device. The server

also carries out any other action that might take place for the scan data (such as validation or logon).

The ScanDatareply contains two items: the FeedbackCode, which tells the device which of several audiovisual feedback signals to use and

whether to print or not, and the PrintData, which contains the label information to be printed. The PrintData field consists of key:value pairs

containing the template name to select and the contents of each field of the selected template.

The device also sends a Stateinformation field which contains an arbitrary text field sent from the server in a previous ScanDatareply

message. When a device is turned on, the Stateinformation field will be blank; after the first ScanDatareply, the Stateinformation field will

contain a copy of the Stateinformation of the preceding ScanDatareply.

16

Field name len Type Format notes sample Value

DuplicateScan

indicator

1 Bool left justified;

numeric+dot; no

imbedded spaces;

indicator that states if this barcode is the same as

the previously sent transaction (1) or different (0)

0

ScanObject

SymbologyType

Code

2 integer right justified;

numeric; zero padded;

unique identifier for the type of symbology of the

barcode from Table 2-17
12

ScanObjectText 160 String left justified;

alpha numeric;

Scan data exactly as

received from imager module

55555555555

Stateinformation 50 String left justified Arbitrary state data from the server, sent in a

previous ScanDatareply, otherwise blank

COOKiE

Table 2-9 ScanData payload

Field name len Type Format notes sample Value

FeedbackCode 2 integer right justified;

numeric; zero padded;

The code representing the feedback signal given to

a person using the lEDs and Audio speaker (device

specific) and the print action to be carried out:

00 = SuCCESS and PriNT

01 = SuCCESS and NO PriNT

02 = FAilurE and NO PriNT

03 = WArNiNG and PriNT

04 = WArNiNG and NO PriNT

Anything else = reserved for future use, no label

will be printed

00

PrintDataText 300 String left justified; key

value pair separated

by colon. Each pair

is separated by a

semicolon

The data required to print a label. Content is label

specific. Order of fields is not important. Colon and

semicolon delimited

PrintTemplate

Name:mylabel1;

FiElD1:HHG

DESKJET;FiEl

D2:QuANTiTy

9999;

Stateinformation 50 String left justified State information from the server. The data sent in

this field will be sent back from the device to the

server in subsequent ScanData requests

COOKiE

Table 2-10 ScanDatareply payload

SP400X Series - 2. ASCII Communication Protocol

17

SP400X Series - 2. ASCII Communication Protocol

Field name len Type Format notes sample Value

resultAndTiming 300 String left justified; key

value pair separa-

ted by colon. Each

pair is separated by

a semicolon

A listing of timing values for each ope-

ration on the imprinter for performance

measuring (in milliseconds). Timing

values are followed by the name of the

print template, the return code from the

ScanDatareply and the error code of the

print operation. See Table 2-18.

Scanning:000120;

Communicating:0002

00; rendering:000088;

Appoaching:001230;

Printing:000623; Total:002261;

PrintTemplateName: my-

Template; returnCode:00000;

PrintingreturnCode:0;

Table 2-11 PrintresultData payload

SetConfig and SetConfigReply
The application server or any other host on the network can send the SetConfig to update configuration parameters on the device. The

device sends the SetConfigreply message back to the address specified in the header of the message. The payload of the SetConfigreply

contains a string with error codes for each parameter from the SetConfig request. The ErrorCode field of the header contains 0 if all para-

meters were set successfully and -1 if any parameter was not set. The payload of the SetConfigreply contains a list of error codes for each

parameter that was updated.

Table 2-12 SetConfig payload

Field name len Type Format notes sample Value

ConifigKey values 500 String left justified; alpha

numeric;

A list of colondelimited configuration

parameters from Table 4-22 and values.

The pairs are delimited with semicolons.

rangerDetectlimitminmm:180;

rangerDetectlimitmaxmm:200;

Table 2-13 SetConfigreply payload

Field name len Type Format notes sample Value

ConifigKey values 500 String left justified; alpha

numeric;

A copy of the list of configuration para-

meters from the corresponding SetConfig

request and the error code for each

parameter. The pairs are delimited with

semicolons.

rangerDetectlimitminmm:0;

rangerDetectlimitmaxmm:0;

18

GetConfig and GetConfigReply
The application server or any other host on the network can send the GetConfig to query configuration parameters on the device. The device

sends the GetConfigreply message back to the address specified in the header of the message. The payload of the GetConfigreply contains

a string with current values for each parameter from the SetConfig request.

Table 2-14 GetConfig payload

Field name len Type Format notes sample Value

ConifigKeys 500 String left justified;

alpha numeric;

A list of semicolon-delimited

configuration parameters

from Table 4-22

“ESSiD;SPPretryCount;”

Table 2-15 GetConfigreply payload

Field name len Type Format notes sample Value

ConifigKey values 500 String left justified;

alpha numeric;

A copy of the list of configu-

ration parameters from the

corresponding GetConfigre-

ply request and the current

values for each parameter.

The pairs are delimited with

semicolons.

ESSiD:GoHHG;SPPretry-

Count:2;

File Aliases
The following table contains a list of the file aliases used to reference files stored on the file serverwhich the device can request to down-

load. Each file has a version associated with it which can be queried using the Getversions command. Each file can then be downloaded by

the device using the GetFile command. The server is free to store the actual file in any format and under any physical file name as long as

the original file content is returned to the device in the GetFile transaction. used definable HHP files are created using the sp400 Configuration

Software application. refer to the sp400 Configuration Software user Guide for more information.

The server maintains a version number for each file. The version number can be any printable text string between 1 and 20 characters.

Table 2-16 HHP file aliases

Field alias Description

HHPCatalog Catalog file used for performing wireless updates. See “Message sequenCe aT DeViCe sTarTup”

HHPConfig Default user configuration parameters. See Table 4-22.

HHPSecurity Security keys (WEP / WPA keys)

HHPTemplate label template as supplied by Handheld or generated by the template design utility

HHPTemplateimage Background image for label template as supplied by Handheld or generated by the template design

utility

HHPCodeFirmware Application firmware code as supplied by Handheld

HHPFPGAFirmware Firmware for the Field Programmable Gate Array as supplied by Handheld

HHPimagerFirmware Firmware for the imager engine as supplied by Handheld

SP400X Series - 2. ASCII Communication Protocol

19

SP400X Series - 2. ASCII Communication Protocol

Field alias Description

HHPCommunicationFirmware Firmware for the communication module as supplied by Handheld

HHPParameterupdate System parameter updates as supplied by Handheld

Table 2-16 HHP file aliases

Supported Symbology Types
The following list shows the symbology types supported by the imager module. The device sends the numeric symbology code as part of

the ScanData message.

Table 2-17 Symbology types

Code symbology

01 Australian Post

02 Aztec Code

03 British Post

04 Canadian Post

05 China Post

06 Codabar

07 Codablock F

08 Code 11

09 Code 16K

10 Code 2 of 5

11 Code 49

12 Code128

13 Code39 (3of9)

14 Code93

15 Data matrix

16 EAN-uCC Composite Codes

17 EAN/JAN-13

18 EAN/JAN-8

19 iATA Code 2 of 5

20 interleaved 2 of 5

21 Japanese Post

22 Kix (Netherlands)Post

23 Korea Post

24 matrix 2 of 5

25 maxiCode

26 microPDF417

20

Table 2-17 Symbology types

Code symbology

27 mSi

28 PDF417

29 Planet Code

30 Plessey Code

31 PosiCode A and B

32 Postnet

33 Qr Code

34 rSS Expanded

35 rSS limited

36 rSS-14

Field name len Format notes sample Value

Scanning 6 right justified; numeric;

zero padded;

Time imager took to process barcode (milliseconds) 000120

Communicating Time message took to send and get reply (milliseconds 000200

rendering Time to render print data string and merge with back-

ground image (milliseconds)

000088

Approaching Time between ready-to-print signal and detection of

encoder motion (milliseconds)

001230

Printing Time to print the label (milliseconds) 000623

Total Time for the entire cycle from scan trigger to end of

print (milliseconds)

002261

PrintTemplateName 1..25 String, left justified Name

of Template used in the

printing of label

myTemplate

returnCode 5 right justified; numeric;

zero padded;

return code from server sent in the ScanDatareply

message.

00000

FeedbackCode 2 Feedback code from server sent in the ScanDatareply

message.

00

PrintingreturnCode 6 Error code of printing of label Codes are defined in

Table 5-23.

000000

Timing and Result Data Keys
The following table contains the keys for timing values that are sent in the PrintDataresults message.

Table 2-18 Key names for timing values

SP400X Series - 2. ASCII Communication Protocol

21

Wi-Fi Key Management
The device supports the standard WEP and WPA-PSK encryption mechanisms for Wi-Fi® security. The current encryption key can be set

with the WifiKey parameter. The device does not return WifiKey when queried to avoid exposing the encryption key to unauthorized hosts on

the network.

Key setup

if setting the WifiKey in clear text is not possible, a simple key encryption mechanism can be used to protect keys from public view. To use

the encryption mechanism, follow these steps:

1. Set the WifiName parameter to the desired encryption string.

2. Encrypt the WEP or WPA keys to be used on the device with the encryption algorithm shown in “enCrypTiOn algOriTHM” using the

same encryption string.

3. Set the WifiKey1 through WifiKey4 keys to the encrypted values of the actual keys.

4. Set the WifiKeyindex to select which of the 4 keys to use. Note that the device will automatically cycle through the keys if the selected key

does not work.

This mechanism ensures that users without access to this document can set keys without deciphering the actual keys. unauthorized users

with packet sniffers will not be able to easily decipher the actual network keys even if they have access to this document since generally

the WifiName parameter will be unknown and the device will not return even if queried.

Note that strong WEP/WPA keys are still essential for Wi-Fi security. For example, there should be no readable text in the keys.

Key file transfer

The file referenced by HHPSecurity (see Table 2-16) contains the Wi-Fi key information as well as the ESSiD the device will connect to. This

file can be created using the sp400 Configuration Software. refer to the sp400 Configuration Software user Guide to more information.

When the device downloads a new key file as part of the startup process, the contents of the file are saved in non-volatile storage and

decrypted using the currently configured WifiName parameter when they are applied.

encryption algorithm

A C# version of the encryption algorithm is shown below.

SP400X Series - 2. ASCII Communication Protocol

22

ASCII Communication Protocol

24

static string SymmetricalEncrypt(string buffer, string password)

{

string encryptedBuffer = "";

int bufLen = buffer.Length;

int passLen = password.Length;

string p1 = ""; //1 character of password

string b1 = ""; //1 character of buffer

string e1 = ""; //1 character encrypted

int e = 0; //numeric encrypted value

//check params

if ((bufLen == 0) || (passLen == 0))

return ""; //return empty string if bad paramaters

for (int i = 0; i < bufLen; i++)

{

//get 1 character at a time of password

p1 = password.Substring((i+1)% passLen, 1);//off by 1

//get 1 character at a time of buffer

b1 = buffer.Substring(i, 1);

//encrypt values (xor)

e = Char.ConvertToUtf32(p1, 0) ^ Char.ConvertToUtf32(b1, 0);

//restrict values

if ((e < 32) //non printable characters

|| (e == 58)//no colon allowed

|| (e == 59)//no semi-colon allowed

)

{

e1 = b1; //no conversion

}

else

{

e1 = Char.ConvertFromUtf32(e); //convert integer back to a character

}

encryptedBuffer += e1; //concat character to string

}

return encryptedBuffer;

}

SP400X Series - 2. ASCII Communication Protocol

23

3. Binary Communication Protocol

Introduction
This section of the document describes the communication protocol used by Handheld SP400X devices to send configuration data between

the host system and a device. The protocol is also used for maintenance and diagnostic purposes. This document does not describe general

usage of the devices, it is meant as a reference for application developers who want to write applications to communicate with the device. it

can be assumed the general use of the device is to send data (typically via a scan/image capture) to a PC, which then sends back data to be

printed by the device.

Protocol
The communication protocol uses fixed-size frames to send commands to the device and responses back to the host. Command and

response currently have the same size and format. The optional data for a command or response always immediately follows the command

or response frame.

SP400X Series - 3. Binary Communication Protocol

24

Framing
The frame uses little-endian byte ordering. The command and response frames use the layout specified in Table 3-19.

Table 3-19 Frame layout

The type field identifies which protocol is being used for the transmission. A printable value (0x20 – 0x7E) in the type field identifies other

protocols used with the device. Any other value identifies the protocol described here.

The mode field is currently not used by the Presto protocol and should be set to zero.

The command code is a 16-bit code that identifies the command. Table 3-20 describes the different command codes.

The frames include a checksum field which is used to verify the integrity of the frame itself. The checksum is calculated using Fletcher’s

Checksum algorithm, which is described in rFC1146 and in this Wikipedia page. All frame fields are used to calculate the checksum.

Field Type Description

Type byte

mode byte

Command uint16

Flags uint32

Param1 uint32

Param2 uint32

Checksum uint32

SP400X Series - 3. Binary Communication Protocol

http://tools.ietf.org/html/rfc1146
http://en.wikipedia.org/wiki/Fletcher%27s_checksum

25

SP400X Series - 3. Binary Communication Protocol
Binary Communication Protocol

27

Fletcher’s Checksum in C#

private UInt32 CalcChecksum(byte[] buf)

{

UInt32 sum1 = 0xFFFF, sum2 = 0xFFFF;

int len = buf.Length / 2;// if odd length then last byte is
ignored

int i = 0;

while (len > 0)

{

int tLen = (len > 360) ? 360 : len;

len -= tLen;

do

{

UInt16 d = (UInt16)((buf[i + 1] << 8) + buf[i]);

sum1 += (UInt32)d;

sum2 += sum1;

i += 2;

} while (--tLen > 0);

sum1 = (sum1 & 0xffff) + (sum1 >> 16);

sum2 = (sum2 & 0xffff) + (sum2 >> 16);

}

// Second reduction step to reduce sums to 16 bits

sum1 = (sum1 & 0xffff) + (sum1 >> 16);

sum2 = (sum2 & 0xffff) + (sum2 >> 16);

return sum2 << 16 | sum1;

}

Fletcher’s Checksum in C#

26

Data Flow
All transactions such as sending configuration data, querying device status, and so on are initiated by the host. A transaction consists of a

command sent from the host to the device and a response sent back from the device to the host. The device echoes the command code in

the response—this allows the host to match up requests and replies.

The protocol is strictly sequential; there are no overlapping commands. Figure 3-1 shows a typical transaction with both command and

response data. Parameter 1 usually contains an error code and parameter 2 usually contains the length of the response data, but there are

some exceptions.

Figure 3-1 Typical transaction with both command and response data

The payload data can be any number of bytes. The transport layer may do any necessary padding as long as the protocol handler and the

originator each see a stream as shown above.

Command Reference
This section lists the command codes and explains their meaning.

8

Figure 2-1 Sequence of the request and response handling of messages

The amount of time the All-in-One waits for a reply and the number of times the All-in-One resends the
transaction are configurable parameters. When a timeout occurs the device sends the request with the
same transaction number as the original message. The server application should always respond to
incoming requests, even if a reply for that request has already been sent.

Command Table
The following table shows the available command codes that are used in the message transactions.

Most messages are initiated by the device with the exception of GetConfig and SetConfig which are
sent by a server or other host to update configuration parameters on the device. The shading in the
following table shows how messages are grouped into requests and replies. In general, each request is
matched with a specific response, but in the case of ScanData the device sends an additional
PrintResultData message to the server after printing the data contained in the ScanDataReply.
Table 2-1 Command code descriptions

Command
code

Mnemonic Description

03 GetFile Get a file from the server – used to transfer firmware, configuration and
print template files. This message is used in a loop until all data blocks
have been received.

04 GetFileReply Reply for 03 – block of file data

05 GetServer Get server address for scan data messages. At startup, the device is
configured to send requests to a specific file server. The GetServer
command is sent after startup and allows the initial application server
to redirect devices to a different application server.

06 GetServerReply Reply for 05 - application server addresses. May be the same address
as the server that is sending this message

07 Heartbeat Heartbeat / status data. The device sends this message at a
configurable interval to allow a server to track how many devices are
currently in use and obtain information about the ink and battery level
of those devices.

08 HeartbeatReply Reply for 07 – server status data. The server sends this message to
update the device with required version information. It also sends a
reboot signal when the server requires the device to reboot.

09 ScanData Scan data – The device sends this message after scanning a barcode.

command

flags

parameter 1

parameter 2

0 … 3

4 … 7

n-7 … n-4

n-3 … n-1 checksum

n-2 … n-1

0 … 3

Command

flags

Param 1 (error code)

Param 2 (data length)

checksum

variable
length
data

variable
length
data

Originator

variable
length
data

variable
length
data

sp400X

SP400X Series - 3. Binary Communication Protocol

27

Command Overview Table
The following table lists the command iD in the left-most column. This iD is the number in the command code field of the frame.

Each command has specific values for the parameter 1, parameter 2, and data payload fields. For the responses, parameter 1 and

parameter 2 fields normally contain error codes and data lengths, respectively. Table 3-20 does not cover the Flags field, which is

explained in Table 3-21 Global Command Flags.

Table 3-20 Command overview table

iD Mnemonic Dir. param 1 param 2 Data payload

0 Echo send any value any value -

recieve copy of

sent value

copy of

sent value

-

1 Get version String send - - -

recieve error code data length version string

2 Get memory send addess data length -

recieve error code data length contents of device memory

3 Put memory send adress data length contents of device memory

recieve error code - -

recieve error code - -

22 Get device configuration send start key num keys -

recieve error code data length configuration parameter(s)

23 Set device configuration send - - configuration strings (key:value;key:value;…)

recieve error code - -

26 Get utility buffer info send - - -

recieve error code buffer size -

30 Get print template names send - - -

recieve error code data length Names of print templates

31 Query versions send - - -

recieve error code data length version info from all subsystems

64 Apply HHP file send - - -

recieve error code - -

SP400X Series - 3. Binary Communication Protocol

28

Command Flags
The flags field is used for both global flags (upper bits) and command-specific flags (lower bits).

Table 3-21 Global Command Flags

Command Details
This section presents a list of all commands with details of their operation and usage.

echo

The echo command is used mainly to test whether the communication between host and device works. The host sends arbitrary values into

the param1 and param2 fields and the device echoes these values back. The device replies with an echo of the Command, Param1, and

Param2.

The echo command can be used as a type of heartbeat to periodically check whether the device is in a known state and communicating

with the host.

get Version string

The Get version String command retrieves a version string from the device. The string contains the date and time of the last compilation

as well as the date and time when the FPGA configuration was built. These strings can be used to determine whether a device needs to be

upgraded. The device sends a response frame with an error code in parameter 1 and the length of the version string in parameter 2. The

version string itself follows the response frame.

get Memory

The Get memory command can be used to retrieve the content of arbitrary memory locations on the device. The host sends the starting

address of the memory region to retrieve in parameter 1 and the length of the memory region in parameter 2.

The device will respond with a response frame containing an error code in parameter 1 and the length of the memory region in parameter

2. The content of the memory region follows the response frame.

put Memory

The Put memory command can be used to write arbitrary values to a memory region on the device.

The host sends the starting address of the memory region to write in parameter 1 and the length of the memory region in parameter 2

followed by the values to be written to device memory.

The device responds with a frame containing an error code in parameter 1.

Flag Mask

New protocol as described here (with checksum) 0x80000000

response data follows frame 0x40000000

use checksum 0x10000000

SP400X Series - 3. Binary Communication Protocol

29

SP400X Series - 3. Binary Communication Protocol

get Device Configuration Values

The Get Device Configuration values command is used to retrieve one or more device configuration parameters from the device. Parameters

are returned as one or more consecutive strings containing key=value pairs.

The host sends the index of the first configuration value that will be retrieved in parameter 1 and the number of configuration values that

will be retrieved in parameter 2. To enumerate all configuration values the host may continually request a very large number of values and

check the number of actually returned values until nothing more is returned.

The device responds with an error code in parameter 1 and the number of returned bytes in parameter 2. The device then sends a stream of

key=value pairs delimited by carriage return (0x0D) characters. The end of the stream is indicated by an additional carriage return charac-

ter. The device might, for example, return “key1=v1\rkey2=v2\r\r”, where \r is the carriage return character. in this case, the parameter 2 in

the response frame would be 17.

For a list of configuration parameters refer to Table 4-22.

set Device Configuration Values

The Set Device Configuration value command is used to set a configuration value(s). The configuration value(s) are sent as key:value; pairs

which indicates to the device that the configuration value called “key” should be set to “value”.

nOTe: This command makes use of the “write to flash” flag on the device. This flag can be either 1 or 0 and indicates whether a configu-

ration value should be immediately committed to flash or should be kept in rAm only. The flag should normally always be set to 1 in order

to avoid losing any values when the device is turned off. if the host wants to do a batch update of many parameters, it is faster and reduces

the wear of the flash memory to set the flag to 0, update a number of values, and set the flag to 1 before updating the final value. When the

final value gets updated, all previous changes are also committed to flash since all configuration parameters are committed at once.

The host sends the “write to flash” flag in parameter 1 and the length of the configuration data string in parameter 2. The host then sends

the key:value; string(s).

The device responds with an error code in parameter 1.

For a list of configuration parameters refer to Table 4-22.

get utility buffer info

The Get utility Buffer info command can be used to retrieve information about the utility buffer, which is a temporary scratch buffer used for

certain commands.

The host sends no additional data with this command.

The device responds with the base address of the utility buffer in parameter 1 and the length of the utility buffer in parameter 2.

get print Template names

The Get Print Template Names command is used to retrieve a list of print template names from the device.

The host does not send any additional data with this command.

The device responds with an error code in parameter 1 and the number of returned bytes in parameter 2. The device then sends the print

template names as a series of zero-terminated strings.

30

query Versions

The Query versions command can be used to retrieve a series of strings with version information of the different subsystems. The exact

layout depends on the subsystems, but generally consists of humanreadable strings.

The host does not send any additional data with this command.

The device responds with an error code in parameter 1 and the number of returned bytes in parameter 2. The device then sends the version

information strings as a series of zero-terminated strings.

Strings are not zero terminated. Each of the four version strings (FW, FPGA, imager FW, and Comm FW) consists of a label, linefeed, carriage

return, and the version string followed by a line feed.

apply HHp File

The Apply HHP File command is used to update a device using a particular HHP file. To use this command the host first transfers the HHP

file to the utility buffer using the Get utility Buffer info and Put memory commands. The host then sends the Apply HHP File command to

cause the device to process the HHP file.

The device responds with an error code in parameter 1.

SP400X Series - 3. Binary Communication Protocol

31

SP400X Series - 4. Configuration Parameters

4. Configuration Parameters

Introduction
This section identifies and describes the configuration parameters of the sp400 SP400X. These parameters are stored in internal non-volati-

le storage. They will retain their value when the device is turned off.

Table of Configuration Parameters
Table 4-22 Configuration parameters

Key name len Type Format notes sample Value

ESSiD 1..50 String left justified;

Alpha numeric

Extended Service Set iD. The ESSiD is the

identifying name of a wireless network (or

sometimes Access Point).

Blue

WifiKey1

WifiKey2

WifiKey3

WifiKey4

10..64 String;

hex

left justified; hexadecimal

digits

Encrypted WEP or WPA-PSK keys.

These keys must be encrypted with the

WifiName parameter. These are write-only

parameter for this protocol.

0123AABBCC

WifiKeyindex 1 integer digit Which of the four WifiKeyN values to use,

range 1-4. Note that the device will cycle

through the other keys if the one selected

by WifiKeyindex does not work.

1

WifiName 10..64 String left justified, no imbedded

spaces

This parameter acts as a decryption key

for WifiKey1-4. The encryption algorithm

is listed in “encryption algorithm”

9A77QZ14P5

FileServeriP 0..16 String left justified; numeric+dot;

no imbedded spaces;

Dot notation of iP address like 127.0.0.1

of the File server for upgrade files. Empty

means don’t connect to file server;

instead connect to app server right away.

Default = 192.168.2.110

10.0.1.100

FileServerPort 5 integer right justified; numeric;

zero padded;

Port number of file Server

Default= 50010

min = 4000

max = 65535

50010

PrimaryregServerD

NSName

0..16 String left justified; numeric+dot;

no imbedded spaces;

Dot notation of iP address like 127.0.0.1

of the primary server for scan and print

requests Default = 192.168.2.120

10.0.1.100

32

Key name len Type Format notes sample Value

PrimaryregServerPort 0..5 integer right justified; numeric;

zero padded;

Port number of Primary Server

Default= 50010

min = 4000

max = 65535

50010

AlternateregServerD

NSName

0..16 String left justified; numeric+dot;

no imbedded spaces;

Dot notation of iP address like 127.0.0.1

of the alternate server to which the device

switches when a timeout occurs

10.0.1.101

AlternateregServerPort 0..5 integer right justified; numeric;

zero padded;

Port number of alternate Server

Default= 50010

min = 4000

max = 65535

50010

EnableDHCP 1 Bool numeric; Will device use DHCP or static iP address

1= True (default)

0= false (use static iP addressing, see

StaticiP and Subnetmask parameters)

1

DHCPAcquireTimeou

tSeconds

3 integer right justified; numeric;

zero padded

maximum time to wait for a DHCP

address.

Default=020

min =001

max =255

020

StaticiP 0..16 String left justified; numeric+dot;

no imbedded spaces;

Dot notation of iP address like 127.0.0.1

of the device when EnableDHCP is set

to 0.

10.110.1.1

Subnetmask 7..16 String left justified; numeric+dot;

no imbedded spaces;

A 32-bit subnet mask used when Enab-

leDHCP is set to 0

255.255.255.0

DefaultGateway 7..16 String left justified; numeric+dot;

no imbedded spaces;

Default iP gateway when EnableDHCP is

set to 0

10.110.1.1

PrimaryDNS 7..16 String left justified; numeric+dot;

no imbedded spaces;

Primary DNS server address when Enab-

leDHCP is set to 0.

10.110.1.1

SecondaryDNS 7..16 String left justified; numeric+dot;

no imbedded spaces;

Secondary DNS server address when

EnableDHCP is set to 0.

10.110.1.1

DeviceSerialNumber 10 String left justified;

Alpha numeric

uNiQuE serial number given to device HGAiO12345

DeviceName 1..50 Free form text to identify device, model or

other user data. Not expected to be unique

per device.

Bobs labeler

Table 4-22 Configuration parameters

SP400X Series - 4. Configuration Parameters

33

SP400X Series - 4. Configuration Parameters

Key name len Type Format notes sample Value

HeartBeatintervalmS 10 integer right justified;

numeric; zero

padded;

Number of milliseconds between each heart beat

message that will be send

Default=0000060000

min =0000000100

max =0010000000

0000060000

BarcodereadTimeou

tmS

Number of milliseconds before Engine stops

searching for a barcode. (note that it will start

again if the proximity detector is triggered)

Default=0000000500

min =0000000100

max =0000100000

0000000500

idleAfterPrintDatare

ceiveTimeoutmS

Number of milliseconds user has to start printing

after print data was received

Default=0000000500

min =0000000001

max =0000100000

0000000500

WifiConnectionTimeo

utmS

Number of milliseconds to wait for the Wi-Fi

network connection to initialize.

Default=0000010000

min =0000000100

max =0010000000

0000001000

reTriggerDelayAfter

PrintmS

Number of milliseconds to wait between

print-done and enabling scanner.

Default=0000000000

min =0000000000

max =0000005000

0000002000

PrintincompleteTime

outmS

Number of milliseconds to wait to for user to

finish printing before it times out.

Default=0000005000

min =0000000500

max =0000100000

0000002000

WifiSecuritymode 1 integer integer nu-

meric;

Number identifying which of several Wi-Fi

security modes is used.

0= no security

1= WEP64

2= WEP128

3= (Default) WPA PSK

4= lEAP (user/pwd)

5= WPA PSK128 (Symbol compatibility)

3

userName 1..16 String left justified; iD used for Wi-Fi security protocols that require

logon.

Tony

Table 4-22 Configuration parameters

34

Key name len Type Format notes sample Value

userPassword Password used for Wi-Fi security protocols that

require logon

Pass

uDPlistenPort 5 integer right justified;

numeric; zero

padded;

uDP port number the device is listening on for

incoming messages.

Default=50010

min =04000

max =65535

50010

SPPAckTimeoutmS 5 integer right justified;

numeric; zero

padded;

Timeout for replies to messagesnof this protocol.

if the time out expires the device retries SPPre-

tryCount number of times.

Default=100

min =1

max =65535

00100

Wifiinitmode 1 integer numeric; initialization flag for the Wi-Fi interface. Automa-

tically changes back to 0 after initialization (bit

field, combine bits below)

0= do nothing (default)

1= initialize general parameters

(iP addresses, for example) using current settings

2= initialize Wi-Fi security parameters using

current settings

1

rangerDetectTimeou

tmS

10 integer right justified;

numeric; zero

padded;

Number of milliseconds to wait for an object to

be detected, also used for general housekeeping

time slice:

Default=0000002000

min =0000000100

max =0000100000

0000002000

rangerDetectlimitmi

nmm

10 integer right justified;

numeric; zero

padded;

minimum number of millimeters away from

object to activate the imager.

Default=0000000100

min =0000000050

max =0000000400

0000000100

rangerDetectlimitm

axmm

maximum number of millimeters away from

object to activate the imager.

Default=0000000225

min =0000000050

max =0000000400

0000000225

imageriniCmds 1..500 String left justified; Commands to initialize the imager separated by

forward slash character “/”.

128Dly0/SuFC

A2/SuFBK2995

C800D0A

Table 4-22 Configuration parameters

SP400X Series - 4. Configuration Parameters

35

SP400X Series - 4. Configuration Parameters

Key name len Type Format notes sample Value

SPPConfig 5 integer right justified;

numeric; zero

padded; this

is a bit field in

decimal

Flags describing additional protocol options (Bit field,

combine bits below) Default value is 13 (0x0c)

1 = ASCii (default)

2 = Binary

4 = enable heartbeat (default)

8 = send print-done message (default)

00013

SPPretryCount 2 integer right justified;

numeric; zero

padded;

Number of times to retry sending a message to the

server default value is 2

02

loggingOptions 5 integer right justified;

numeric; zero

padded; this

is a bit field in

decimal

Bit field with flags to select different logging options

1 = log startup phase

2 = log scan and print

4 = log additional warnings

8 = log informational data

01

ApplicationName 20 String left justified Name of application in use on this device Packaging1

Non persistent (rAm only) parameters that will get reset the next time it is turned off and on

CurrentServeriP 0..16 String left justified;

numeric+dot;

no imbedded

spaces;

Dot notation of iP address like 127.0.0.1 of the current

server it is communicating with. Defaults to Primary-

ServeriP when turned on.

10.0.1.100

CurrentServerPort 0..5 integer right justified;

numeric; zero

padded;

Port number of current server it is communicating

with. Defaults to PrimaryServeriP when turned on.

50010

Table 4-22 Configuration parameters

36

5. Error Codes

Introduction
This section identifies and describes the error codes available from the message and command responses as defined in the ASCii and

binary protocols of the sp400 SP400X.

Table of Error Codes
Table 5-23 Error codes

error name Value

Generic Errors

PE_NO_ErrOr 0

PE_NOT_FOuND - 49999

PE_BuSy - 49998

PE_TimEOuT - 49997

PE_NOT_iNiTiAliSED - 49996

PE_TyPE_miSmATCH - 49995

PE_BAD_PArAm_0 - 49994

PE_BAD_PArAm_1 - 49993

PE_BAD_PArAm_2 - 49992

PE_BAD_PArAm_3 - 49991

PE_BAD_PArAm_4 - 49990

PE_BAD_PArAm_5 - 49989

PE_BAD_PArAm_6 - 49988

PE_BAD_PArAm_7 - 49987

PE_BAD_PArAm_8 - 49986

PE_NO_TimEr - 49985

PE_OS_ErrOr - 49984

PE_NO_muTEX - 49983

PE_NOT_OWNEr - 49982

PE_WriTEONly - 49981

PE_DOOr_OPEN - 49980

PE_EXiSTS - 49979

PE_miCCi_COm_ErrOr - 49978

PE_NOT_CONNECTED - 49977

SP400X Series - 5. Error Codes

37

SP400X Series - 5. Error Codes

error name Value

PE_CHECKSum - 49976

PE_DOOr_ClOSE - 49975

PE_ASyNC - 49974

PE_OuT_OF_rANGE - 49973

PE_SHuTTiNG_DOWN - 49972

General Communication Errors

PE_ACK_TimEOuT - 39999

PE_BAD_uArT_Num - 39998

PE_BAD_BAuD - 39997

Wifi module Errors

PE_DPAC_CmD_ErrOr - 38999

PE_DPAC_uNKNOWN_rESPONSE - 38998

imager errors

PE_imAGEr_ErrOr - 37999

PE_imAGEr_NAK - 37998

PE_imAGEr_ENQ - 37997

PE_imAGEr_FW_DOWNlOAD_FAilED - 37996

PE_imAGEr_iNiT_ErrOr - 37995

PE_imAGEr_COmm_PrES_ErrOr - 37994

PE_imAGEr_COmm_TriGG_ErrOr - 37993

Bluetooth module Errors

PE_BT_mODulE_ErrOr - 36999

PE_BT_uNKNOWN_ErrOr - 36998

PE_BT_NO_BuFFEr - 36997

PE_BT_NO_CONNECTiON - 36996

PE_BT_uNABlE_TO_SEND - 36995

Printing Errors

PE_PriNT_iNCOmPlETE - 35999

PE_PriNT_TimEOuT - 35998

PE_PriNT_CANCEl - 35997

PE_PriNT_NO_imAGE_TEmPlATE - 35996

PE_PriNT_Dir_CHANGE - 35995

PE_PriNT_BiDirECTiON_NOT_ENABlE - 35994

PE_PriNT_SErvEr_NO_PriNT - 35993

PE_PriNT_BArrACuDA_ErrOr - 35992

Table 5-23 Error codes

38

error name Value

ranger Errors

PE_rANGEr_TimEOuT - 34999

Scan Print Protocol Errors

PE_TrANSACTiON_iD_miSmATCH - 33999

Print information Errors

PE_Pi_imAGE_NOT_FOuND - 32999

PE_Pi_TEmPlATE_NOT_FOuND - 32998

PE_Pi_KEy_NOT_FOuND - 32997

PE_Pi_SErvEr_ErrOr - 32996

PE_Pi_ui_SErvEr_FEEDBACK_ErrOr - 32995

PE_Pi_Num_mErGES_EXCEEDED - 32994

Flash Errors

PE_BlOCK_OuT_OF_rANGE - 31999

PE_BAD_BlOCK_liNK - 31998

PE_BAD_BlOCK_NumBEr - 31997

PE_BAD_imAGE_NumBEr - 31996

PE_OuT_OF_SPACE - 31995

PE_imAGE_TABlE_OvErFlOW - 31994

PE_imAGE_TOO_lArGE - 31993

PE_mAGiC_NumBEr_COrruPT - 31992

PE_DuPliCATE_HEADEr - 31991

PE_BAD_FlASH_OFFSET - 31990

PE_FlASH_WriTE_ErrOr - 31989

PE_EPCS_COrruPT - 31988

PE_EPCS_lENGTH_miSmATCH - 31987

PE_EPCS_CONFiG_NOT_FOuND - 31986

PE_FlASH_iNFO_ErrOr - 31985

PE_FlASH_COrruPT - 31984

Service Station Errors

PE_SErviCE_STATiON_limiT_SWiTCH_ErrOr - 30999

PE_SErviCE_STATiON_OPEN_TimEOuT - 30998

PE_SErviCE_STATiON_ClOSE_TimEOuT - 30997

PE_SErviCE_STATiON_OPEN_PriNT_DATA_WAiT_TimEOuT - 30996

PE_SErviCE_STATiON_imAGE_CrEATiON_TimEOuT - 30995

PE_SErviCE_STATiON_iDlE_uPDATE_TimEOuT - 30994

Table 5-23 Error codes

SP400X Series - 5. Error Codes

39

SP400X Series - 5. Error Codes

error name Value

PE_SErviCE_STATiON_ENTEr_PriNT_rEADy_TimEOuT - 30993

Pen Errors

PE_PEN_iNTErCONNECT_ErrOr - 29999

PE_PEN_iNvAliD - 29998

PE_PEN_FuSE_ErrOr - 29997

PE_PEN_uNKNOWN_lEvEl - 29996

PE_PEN_ErrOr - 29995

Font Errors

PE_FONT_FilE_COrruPT - 28999

PE_FONT_NOT_FOuND - 28998

PE_FONT_CHAr_NOT_FOuND - 28997

SmBus and i2C Communication Errors

PE_SmBuS_COmm_ErrOr - 27999

PE_i2CBuS_COmm_ErrOr - 27998

Table 5-23 Error codes

